Exploring klib Library in Python

Introduction

Featuring a user-friendly design, klib is a Python library tailored for efficient data exploration and preprocessing tasks. It provides a suite of functions empowering data scientists and analysts to handle various data manipulation processes seamlessly. Compatible with diverse data sources, including CSV, JSON, and Excel, klib is lightweight, easy to install, and enhances the efficiency of data manipulation workflows.

Getting started:

To begin using the klib library, start by installing it on your system:

pip install klib

Importing Libraries

import pandas as pd
import klib
import warnings
warnings.filterwarnings('ignore')

Importing Dataset

df = pd.read_csv('C:/Users/SANKHYA/Downloads/dataset.csv')
df.head()
PlayerID Position Height Weight Shuttle (20yd) 40yd 60ydShuttle
0 10000 Center Back 69.8 198 4.60 4.42 11.91
1 10001 Center 74.8 266 4.60 4.97 NaN
2 10002 Full Back 71.8 217 NaN NaN NaN
3 10003 Center 75.0 279 4.33 5.13 NaN
4 10004 Wide Receiver 72.1 202 4.52 4.64 11.85

Let’s try out some functions:

klib.corr_mat () - Generates a color-coded correlation matrix.
klib.corr_mat(df)
  PlayerID Height Weight Shuttle (20yd) 40yd 60ydShuttle
PlayerID 1.00 0.04 0.02 0.10 -0.00 0.05
Height 0.04 1.00 0.79 0.50 0.65 0.38
Weight 0.02 0.79 1.00 0.64 0.82 0.50
Shuttle (20yd) 0.10 0.50 0.64 1.00 0.68 0.78
40yd -0.00 0.65 0.82 0.68 1.00 0.51
60ydShuttle 0.05 0.38 0.50 0.78 0.51 1.00
klib.corr_plot() - Generates a color-coded heatmap that is well-suited for visualizing correlations.
klib.corr_plot(df, figsize=(10, 6))
<Axes: title={'center': 'Feature-correlation (pearson)'}>

klib.corr_plot(df, target=” “) - Generates a color-coded heatmap of the feature column.
klib.corr_plot(df, target='Height', figsize=(10, 6))
<Axes: title={'center': 'Feature-correlation (pearson)'}>

klib.dist_plot - Generates a distribution plot for each numeric feature.
klib.dist_plot(df)
<Axes: xlabel='PlayerID', ylabel='Density'>

klib.missingval_plot() - Generates a visual representation providing information about missing values.
klib.missingval_plot(df)
GridSpec(6, 6)

Additional Functions:

  • klib.cat_plot(df) - Visualize categorical feature count and frequency

  • klib.corr_interactive_plot(df).show() - Generate an interactive correlation plot using Plotly

  • klib.convert_datatypes(df) - Converts data types to more efficient ones

  • klib.drop_missing(df) - Removes rows with missing values, incorporated into the data cleaning process

  • klib.mv_col_handling(df) - Drops features with a high ratio of missing values based on informational content

  • klib.pool_duplicate_subsets(df) - Efficiently pools subsets of columns based on duplicates with minimal loss of information.

Conclusion:

klib stands out as a versatile Python library, offering a seamless experience from data import and cleaning to advanced analysis and preprocessing. Its comprehensive functions simplify the data preparation journey for analysts and data scientists, ensuring an efficient and insightful workflow. With a user-friendly interface and well-documented features, klib empowers users to derive meaningful insights from their data.